1.a) $\min W=240 y_{1}+700 y_{2}+20 y_{4}$

$$
\text { s.t.: }\left\{\begin{array}{c}
y_{1}+4 y_{2}+y_{3} \geq 10 \\
y_{1}+2 y_{2}-y_{3} \geq 20 \\
4 y_{1}+y_{2}-y_{3}+y_{4} \geq 40 \\
y_{1}, y_{2} \geq 0 \\
y_{3}, y_{4} \leq 0
\end{array}\right.
$$

1.b) $x_{A}=90 ; x_{B}=70 ; x_{C}=20$. In order to maximize the profit, $90\left(x_{A}\right)$ units of $\mathbf{A}, 70\left(x_{B}\right)$ of \mathbf{B} and $20\left(x_{C}\right)$ of \mathbf{C}, should be produced every week.
1.c) $y_{1}=15 ; x_{1}=|240-240|=0$. The h.m. available per week are fully used, so it is a scarce resource ($x_{1}=0$). For each additional h.m. (less) the weekly profit increases (decreases) $15 \mathrm{~m} . \mathrm{u}$. ($=y_{1}$), while optimal basis is kept.
$y_{2}=0 ; x_{2}=|700-520|=180$. Each week, there is a leftover of $180 \mathrm{~m}^{3}\left(=x_{2}\right)$ in the oven capacity. So its internal value is null $\left(y_{2}=0\right)$. Changes in its values does not cause changes in the weekly profit, while optimal basis is kept.
$y_{3}=-5 ; x_{3}=|0-0|=0$. The relation imposed among the sales of products is satisfied at equality ($x_{3}=0$). For each additional unit (less) in this constraint the weekly profit decreases (increases) 5 m.u. $\left(=-y_{1}\right)$, while optimal basis is kept.
$y_{4}=-25 ; x_{4}=|20-20|=0$. The production of C is the minimum required $\left(x_{4}=0\right)$. For more (less) each unit required the weekly profit decreases (increases) $25 \mathrm{~m} . \mathrm{u} .\left(=-y_{4}\right)$, while optimal basis is kept.
1.d.1) $\operatorname{Max} Z=10 x_{A}+20 x_{B}+40 x_{C}$

$$
\text { s.t. }:\left\{\begin{array}{c}
x_{A}+x_{B}+4 x_{C}+x_{1}=240 \\
4 x_{A}+2 x_{B}+x_{C}+x_{2}=700 \\
x_{A}-x_{B}-x_{C}-x_{3}=0 \\
x_{A}, x_{B}, x_{C}, x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
$$

1.d.2) The last constraint should be multiplied by (-1). CE: $\operatorname{Min}\{-10 ;-20 ;-40\}=-40 \rightarrow \mathrm{x}_{\mathrm{C}}$;

CS: $\operatorname{Min}\left\{\frac{240}{4} ; \frac{700}{1} ; \frac{0}{1}\right\}=0 \rightarrow \mathrm{x}_{3}$

	Z	x_{A}	x_{B}	x_{C}	x_{1}	x_{2}	x_{3}	RHS
Z	1	-10	-20	-40	0	0	0	0
x_{1}	0	1	1	4	1	0	0	240
x_{2}	0	4	2	1	0	1	0	700
x_{3}	0	-1	1	1	0	0	1	0
Z	1	-50	20	0	0	0	40	0
x_{1}	0	5	-3	0	1	0	-4	240
x_{2}	0	5	1	0	0	1	-1	700
x_{C}	0	-1	1	1	0	0	1	0

$\mathbf{x}=(0,0,0,240,700,0)$. Non optimal BFS. The OF row still has negative values and every solution in a simplex tableaux is basic.
1.d.3) BV: x_{1}, x_{2}, x_{C}. NBV: x_{A}, x_{B}, x_{3}.
1.d.4) The optimal value can never be smaller than the initial as the problem is a maximization problem and the FR contains the FR of the initial problem.

